授课人: 科 目集体研讨主持人教案序号集体研讨与个案补充课题课型新课时形式个 人 备 课导学活动过程教学目标:知识与能力
1、了解立方根的概念,初步学会用根号表示一个数的立方根.
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
3、让学生体会一个数的立方根的惟一性.
4、分清一个数的立方根与平方根的区别。过程与方法通过类比平方根的方法学习立方根的有关知识,领会类比思想。情感、态度和价值观通过对开立方和立方互为逆运算关系的学习,体现事物之间对立又统一的辩证关系,激发学生探索数学的兴趣。教学重点、难点重点:1、 立方根的概念。2、 会用计算器求一个数的立方根。难点:1、 正确理解立方根的概念。2、 会求一个数的立方根。3、 区分立方根与平方根的不同之处。教学设计:一、 复习知识,引入新课教师提问:平方根我们是如何定义的?平方根有哪些性质?通过复习,增强学生的记忆,同时为立方根概念和性质的学习作铺垫。二、 探究立方根的概念和性质1、多媒体展示立方体并提问,让学生思考。
问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
设这种包装箱的边长为x m,则 =27这就是求一个数,使它的立方等于27.
因为 =27, 所以x=3. 即这种包装箱的边长应为3 m形式个 人 备 课集体研讨与个案补充 导学活动过2、教师提问:立方根的概念是什么?学生讨论交流后回答,教师归纳。
如果一个数的立方等于 ,这个数叫做 的立方根(也叫做三次方根),即如果 ,那么 叫做 的立方根3、探究: 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点? 因为 ,所以8的立方根是( 2 ) 因为 ,所以0.125的立方根是( )因为 ,所以8的立方根是( 0 )因为 ,所以8的立方根是( )因为 ,所以8的立方根是( )【总结归纳】:一个正数有一个正的立方根0有一个立方根,是它本身一个负数有一个负的立方根任何数都有唯一的立方根一个数 的立方根,记作 ,读作:“三次根号 ”,其中 叫被开方数,3叫根指数,不能省略,若省略表示平方。例如: 表示27的立方根, ; 表示 的立方根, .4、探究: 因为 所以 = 共2页,当前第1页12
- 推荐阅读:
- 3.3 立方根
- 17.3立方根
- 立方根
- 2.3 立方根
- 立方根(1)
- 立方根
- 立方根教案
利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即 形式
个 人 备 课集体研讨与个案补充
5、 例 求下列各式的值:
(1) ; (2) ; (3)
(4) ; (5) ; (6)
三、用计算器求立方根
1、问题: 有多大呢?
因为 ,
所以
2、利用计算器来求一个数的立方根:操作 用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是根指数不同。步骤:输入 → 被开方数 → = → 根据显示写出立方根.四、课堂练习课本79页1、2、3、4五、小结巩固 1、立方根的概念及性质
2、用计算器来求一个数的立方根。
六、作业:p80习题13.2第4、8题反思共2页,当前第2页12
- 推荐阅读:
- 3.3 立方根
- 17.3立方根
- 立方根
- 2.3 立方根
- 立方根(1)
- 立方根
- 立方根教案