教学目标
1.了解的概念,象与原象的概念,和一一的概念.
(1)明确是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示, 把握与一一的区别;
(3)会求给定的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
是一种特殊的对应,一一又是一种特殊的,而且函数也是特殊的,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是和一一概念的形成与认识.
①的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 中的唯一这点要求的理解;
是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成,由此可以看到必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一又在的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是,逐步归纳概括出的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习时,为了能让学生看清的构成,可以选择用图形表示,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识,而后再选择用抽象的数学符号表示,比如:
, .
这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,的一般表示方法为 ,从这个符号中也能看到是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出的例子,教师也给出一些的例子,让学生从中发现的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现的特点,一起概括.最后再让学生举例,并逐步增加要求向一一靠拢, 引出一一概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案 2.1 教学目标 (1)了解的概念,象与原象及一一的概念. 教学重点难点::概念的形成与认识. 教学用具:实物投影仪 教学方法:启发讨论式 教学过程 : 一、引入 在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用的观点给出函数的定义.那么是什么呢?这就是我们今天要详细的概念. 二、新课 在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个) 我们今天要研究的是一类特殊的对应,特殊在什么地方呢? (板书) 一. 1.定义:一般地,设 两个集合,如果按照某种对应法则 ,对于集合 中的任何一个元素,在集合 中都有唯一的元素和它对应,那么这样的对应(包括集合 及 到 的对应法则)叫做集合 到集合 的,记作 . (板书) 2.象与原象 (1) , , , . (2) . (3) 除以3的余数. (4) {高一1班同学}, {入学是数学考试成绩}, 对自己的考试成绩. 在学生作出判断之后,引导学生发现的性质(教师适当提出研究方向由学生说,再由老师概括) (板书)3.对概念的认识 (1) 与 是不同的,即 与 上有序的. (2)象的集合是集合B的子集. (3)集合A,B可以是数集,也可以是点集或其它集合. 在刚才研究的基础上,教师再提出(2)和(4)有什么共性,能否把它描述出来,如果学生不能找出共性,教师可再给出几个例子,(用投影仪打出) 如: (1) (2) {数轴上的点}, 实数与数轴上相应的点对应. (板书)4.一一 (1)定义:设A,B是两个集合, 是集合A到集合B的,如果在这个下 对于集合A中的不同元素,在集合B中又不同的象,而且B中每一个元素都有原象,那么这个叫做A到B上的一一. 其中只有第三个表可以表示一一,由此例点明一一的特点 (板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合. (板书)5.求象与原象. 例2 (1)从R到 的 ,则R中的-1在 中的象是_____; 中的4在R中的原象是_____. 三、小结 1.是特殊的对应 2.一一是特殊的. 四、作业 :略 五、板书设计 探究活动 (1) {整数}, {偶数}, ,试问 与 中的元素个数哪个多?为什么?如果我们建立一个由 到 的对应法则 乘以2,那么这个是一一吗? 答案:两个集合中的元素一样多,它们之间可以形成一一. (2)设 , ,问最多可以建立多少种集合 到集合 的不同?若将集合 改为 呢?结论是什么?如果将集合 改为 ,结论怎样?若集合 改为 , 改为 ,结论怎样? 从以上问题中,你能归纳出什么结论吗?依此结论,若集合A中含有 个元素,集合B中含有 个元素,那么最多可以建立多少种集合 到集合 的不同? 答案:若集合A含有m个元素,集合B含有n个元素,则不同的 有 个.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过概念的学习,逐步提高学生的探究能力.
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将的定义引出.(主体内容由学生完成,教师做必要的补充)
定义给出之后,教师应及时强调是特殊的对应,故是三部分构成的一个整体,从的符号表示中也可看出这一点,它的特殊之处在于元素与元素之间的对应必须作到“任一对唯一”,同时指出具有对应关系的元素即 中元素 对应 中元素 ,则 叫 的象, 叫 的原象.
可以用前面的例子具体说明谁是谁的象,谁是谁的原象.
提问3:下面请同学根据自己对的理解举几个的例子,看对是否真正认识了.
(开始时只要是即可,之后可逐步提高要求,如集合是无限集,或生活中的例子等)由学生自己评判.之后教师再给出几个(主要是补充学生举例类型的不足)
(3) {中国,日本,韩国}, {北京,东京,汉城}, 相应国家的首都.
引导学生在元素之间的对应关系和元素个数上找共性,由学生提出两点共性集合A中不同的元素对集合B中不同的元素;②B中所有元素都有原象.
那么满足以上条件的又是一种特殊的,称之为一一.
给出定义后,可再返回到刚才的例子,让学生比较它与的区别,从而进一步明确“一一”的含义.然后再安排一个例题.
例1 下列各表表示集合A(元素a)到集合B(元素b)的一个,判断这些是不是A到B上的一一.
对于我们现在了解了它的定义及特殊的一一,除此之外对于还要求能求出指定元素的象与原象.
(2)在给定的 下,则点 在 下的象是_____, 点 在 下的原象是______.
(3) 是集合A到集合B的, ,则A 中 元素 的象是_____,B中象0的原象是______, B中象-6的原象是______.
由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.
注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与的定义也是相吻合的.但如果是一一,则方程一定有唯一解.
3.掌握求象与原象的方法.