皮皮范文网欢迎您!
首页 >  教案大全 >  数学教案 >  高中数学教案 >  高一数学教案 >

逻辑联结词

一、教学目标
    (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
    (2)理解逻辑联结词“或”“且”“非”的含义;
    (3)能用逻辑联结词和简单命题构成不同形式的复合命题;
    (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
    (5)会用真值表判定相应的复合命题的真假;
    (6)在知识学习的基础上,培养学生简单推理的技能.
    二、教学重点难点:
    重点是判定复合命题真假的方法;难点是对“或”的含义的理解.
    三、教学过程
    1.新课导入
    在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,非凡是进入高中以后,所学的教学比初中更强调逻辑性.假如不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
    初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
    (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
    学生举例:平行四边形的对角线互相平. ……(1)
    两直线平行,同位角相等.…………(2)
    教师提问:“……相等的角是对顶角”是不是命题?……(3)
    (同学议论结果,答案是肯定的.)
    教师提问:什么是命题?
    (学生进行回忆、思考.)
    概念总结:对一件事情作出了判定的语句叫做命题.
    (教师肯定了同学的回答,并作板书.)
    由于判定有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
    (教师利用投影片,和学生讨论以下问题.)
    例1 判定以下各语句是不是命题,若是,判定其真假:
    命题一定要对一件事情作出判定,(3)、(4)没有对一件事情作出判定,所以它们不是命题.
    初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
    2.讲授新课
    大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
    (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
    (1)什么叫做命题?
    可以判定真假的语句叫做命题.
    判定一个语句是不是命题,关键看这语句有没有对一件事情作出了判定,疑问句、祈使句都不是命题.有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
    (2)介绍逻辑联结词“或”、“且”、“非”.
    “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.3页,当前第1123
    对“或”的理解,可联想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.
    对“且”的理解,可联想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 这两个条件都要满足的意思.
    对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .
    命题可分为简单命题和复合命题.
    不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
    由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
    (4)命题的表示:用 , , , ,……来表示.
    (教师根据学生回答的情况作补充和强调,非凡是对复合命题的概念作出分析和展开.)
    我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式.
    给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
    对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
    在判定一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
    3.巩固新课
    例2 判定下列命题,哪些是简单命题,哪些是复合命题.假如是复合命题,指出它的构成形式以及构成它的简单命题.
    (1) ;
    (2)0.5非整数;
    (3)内错角相等,两直线平行;
    (4)菱形的对角线互相垂直且平分;
    (5)平行线不相交;
    (6)若 ,则 .
    (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
    例3 写出下表中各给定语的否定语(用课件打出来).
    若给定语为
    等于
    大于
    是
    都是
    至多有一个
    至少有一个
    至多有 个
    其否定语分别为
    分析:“等于”的否定语是“不等于”;
    “大于”的否定语是“小于或者等于”;
    “是”的否定语是“不是”;
    “都是”的否定语是“不都是”;3页,当前第2123
    “至多有一个”的否定语是“至少有两个”;
    “至少有一个”的否定语是“一个都没有”;
    “至多有 个”的否定语是“至少有 个”.
    (假如时间宽裕,可让学生讨论后得出结论.)
    置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
    4.课堂练习:第26页练习1,2.
    5.课外作业:第29页习题1.6 1,2.3页,当前第3123