由于一个圆的任意两条直径互相平分,但是它们不一定是互相垂直的.所以得到上面命题的结论,必须加上“弦不是直径”这一条件.教师用文字叙述为:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;将①和③对调,又得新命题为:④直线cd平分acb,⑤直线cd平分adb.从而得到:(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弦;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.以上三条是垂径定理的推论1;请同学继续观察,当直径cd旋转与弦ab平行时,可得新的命题为:
推论2:圆的两条平行弦所夹的弧相等.教师引导学生回述证明过程.数学表述成为:ab∥cd = .接着做练习:练习1:“平分弦的直径垂直于弦,并且平分弦所对的两条弧”这句话对吗?为什么?练习2:按图7-14填空:在⊙o中,
(1)若mn⊥ab,mn为直径,则______,______,______;共2页,当前第1页12
- 推荐阅读:
- 垂直于弦的直径(一)
- 垂直于弦的直径(三)
- 垂直于弦的直径
- 垂直于弦的直径
- 垂直于弦的直径
- 垂直于弦的直径
- 垂直与平行教案
- 垂直与平行的教学设计
- 平行与垂直教学设计
已知: .求作: 的中点.分析:要将 两等分,如何确定 的中点呢?学生在教师的启发下,想出作圆的方法,这时教师进一步提出问题;连结ab,作ab的垂直平分线交 于点e,为什么可以说e点是 的中点呢?根据什么?作图由学生自己完成.教师这样做的目的是引导学生学习平分弧的方法,通过积极思考得到解决办法,这样理解深刻,不容易出错.练习3:p.80中3(由学生完成)略.三、课堂小结:本节课主要学习了垂径定理的两个推论.利用推论1举出平分弧的作图.四、布置作业p.84中14题.补充作业:1.已知:如图7-15,ab为⊙o的直径,cd为弦,ec⊥cd,fd⊥cd,垂足分别为c,d.求证:ae=bf.
2.已知:如图7-16,ab为⊙o直径,cd为弦,ae⊥cd,bf⊥cd,垂足分别为e,f.求证:(1)cf=de(2)∠oef=zofe共2页,当前第2页12
- 推荐阅读:
- 垂直于弦的直径(一)
- 垂直于弦的直径(三)
- 垂直于弦的直径
- 垂直于弦的直径
- 垂直于弦的直径
- 垂直于弦的直径
- 垂直与平行教案
- 垂直与平行的教学设计
- 平行与垂直教学设计