如图7-48,直线l到圆心o的距离oc等于圆o的半径,直线l是⊙o的切线.这时我们来观察直线l与⊙o的位置.发现(1)直线l经过半径oc的外端点c(2)直线l垂直于半径oc.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.二、新课讲解:定理:经过半径外端并且垂直于这条半径的直线是圆的切线.在切线的三种判定方法中,切线的判定定理最为重要,应用最为广泛.务使每个学生清楚,除了从直线和圆的公共点的个数;直线到圆心的距离等于该圆半径之外,还有其它的判定方法.可提示学生从直线与圆的位置关系来观察,从而发现切线的判定定理.尤其是要指导学生理解好一条直线必须经过半径的外端,并且垂直于这条半径的两大要素缺一不可.练习一,结合图形,根据题中所给的条件,判定直线是否是圆的切线.并回答根据是什么?(1)如图7-49,直线l和⊙o只有一个公共点c.
(2)如图,⊙o的半径为5cm,直线l到圆心o的距离也为5cm.(3)看图回答.此题利用不同的方法判定.例题 已知:直线ab经过⊙o上的点c,并且oa=ob,ca=cb.
求证:直线ab是⊙o的切线.指导学生对题目进行分析.要证直线是圆的切线.从已知中我们得到:直线ab经过⊙o上的点c,它的意义就是c是直线ab和⊙o的公共点.这时,我们只要连接oc,则直线ab就经过了半径oc的外端c.只要我们能够证明ab⊥oc,则从位置上已满足了判定定理的二条,则由切线的判定定理,就可以判定直线ab是⊙o的切线.在证明一条直线是圆的切线时,如果使用判定定理,那么在教学中一定要注意规范几何语言:用推出法证明例题,因为所以的写法请参照教材p.106例题.证明:连结oc.教学中可以让学生先用因为所以法在练习本上证明,一个学生在黑板上板书,然后由教师板书推出法.并加以比较.练习二:p.106练习1.如图7-51,ab是⊙o的直径,∠abt=45°,at=ab.
求证:at是⊙o的切线.这个题目中已知ab是⊙o的直径,可以直接理解出oa是一条半径.而所要证明的直线at已经和⊙o有了公共点a,只要证明at⊥oa即可.共2页,当前第1页12
- 推荐阅读:
- 切线的判定和性质2
- 切线的判定和性质(三)
- 切线的判定和性质
- 切线的判定和性质
- 切线的判定和性质
- 切线的判定和性质
- 推荐阅读:
- 切线的判定和性质2
- 切线的判定和性质(三)
- 切线的判定和性质
- 切线的判定和性质
- 切线的判定和性质
- 切线的判定和性质