皮皮范文网欢迎您!
首页 >  教案大全 >  数学教案 >  高中数学教案 >  高三数学教案 >

三角函数教案

二、复习要求
1、 三角函数的概念及象限角、弧度制等概念;
2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;
3、三角函数的图象及性质。
三、学习指导
1、角的概念的推广。从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。在弧度制下,扇形弧长公式l=|α|r,扇形面积公式 ,其中α为弧所对圆心角的弧度数。
2、利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数。三角函数定义是本章重点,从它可以推出一些三角公式。重视用数学定义解题。
设p(x,y)是角α终边上任一点(与原点不重合),记 ,则 , , , 。
利用三角函数定义,可以得到(1)诱导公式:即 与α之间函数值关系(k∈z),其规律是"奇变偶不变,符号看象限";(2)同角三角函数关系式:平方关系,倒数关系,商数关系。
3、三角变换公式包括和、差、倍、半公式,诱导公式是和差公式的特例,对公式要熟练地正用、逆用、变用。如倍角公式:cos2α=2cos2α-1=1-2sin2α,变形后得 ,可以作为降幂公式使用。
三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。
4、三角函数的性质除了一般函数通性外,还出现了前面几种函数所没有的周期性。周期性的定义:设t为非零常数,若对f(x)定义域中的每一个x,均有f(x t)=f(x),则称t为f(x)的周期。当t为f(x)周期时,kt(k∈z,k≠0)也为f(x)周期。
三角函数图象是性质的重要组成部分。利用单位圆中的三角函数线作函数图象称为几何作图法,熟练掌握平移、伸缩、振幅等变换法则。
5、本章思想方法
(1) 等价变换。熟练运用公式对问题进行转化,化归为熟悉的基本问题;
(2) 数形结合。充分利用单位圆中的三角函数线及三角函数图象帮助解题;
(3) 分类讨论。
四、典型例题
例1、 已知函数f(x)=
(1) 求它的定义域和值域;
(2) 求它的单调区间;
(3) 判断它的奇偶性;
(4) 判断它的周期性。
分析:
(1)x必须满足sinx-cosx>0,利用单位圆中的三角函数线及 ,k∈z
∴ 函数定义域为 ,k∈z

∴ 当x∈ 时,


∴ 函数值域为[ )
(3)∵ f(x)定义域在数轴上对应的点关于原点不对称
∴ f(x)不具备奇偶性
(4)∵ f(x 2π)=f(x)
∴ 函数f(x)最小正周期为2π
注;利用单位圆中的三角函数线可知,以ⅰ、ⅱ象限角平分线为标准,可区分sinx-cosx的符号;
以ⅱ、ⅲ象限角平分线为标准,可区分sinx cosx的符号,如图。
例2、 化简 ,α∈(π,2π)
分析:3页,当前第1123
  • 推荐阅读:
  • 三角函数教案2
  • 高一数学说课稿:三角函数
  • 向量与三角函数创新题型的解题技巧
  • 1.6三角函数模型的简单应用---潮汐问题
  • 《三角函数》教学反思
  • 已知三角函数值求角
  • 三位数乘两位数教案
  • 两位数乘两位数教案
  • 因数和倍数教案

凑根号下为完全平方式,化无理式为有理式

∴ 原式=
∵ α∈(π,2π)


当 时,
∴ 原式=
当 时,
∴ 原式=
∴ 原式=
注:
1、本题利用了"1"的逆代技巧,即化1为 ,是欲擒故纵原则。一般地有 , , 。
2、三角函数式asinx bcosx是基本三角函数式之一,引进辅助角,将它化为 (取 )是常用变形手段。特别是与特殊角有关的sin±cosx,±sinx± cosx,要熟练掌握变形结论。
例3、 求 。
分析:
原式=
注:在化简三角函数式过程中,除利用三角变换公式,还需用到代数变形公式,如本题平方差公式。
例4、已知00<α<β<900,且sinα,sinβ是方程 =0的两个实数根,求sin(β-5α)的值。
分析:
由韦达定理得sinα sinβ= cos400,sinαsinβ=cos2400-
∴ sinβ-sinα=
又sinα sinβ= cos400

∵ 00<α<β< 900

∴ sin(β-5α)=sin600=
注:利用韦达定理变形寻找与sinα,sinβ相关的方程组,在求出sinα,sinβ后再利用单调性求α,β的值。
例5、(1)已知cos(2α β) 5cosβ=0,求tan(α β)·tanα的值;
(2)已知 ,求 的值。
分析:
(1) 从变换角的差异着手。
∵ 2α β=(α β) α,β=(α β)-α
∴ 8cos[(α β) α] 5cos[(α β)-α]=0
展开得:
13cos(α β)cosα-3sin(α β)sinα=0
同除以cos(α β)cosα得:tan(α β)tanα=
(2) 以三角函数结构特点出发


∴ tanθ=2

注;齐次式是三角函数式中的基本式,其处理方法是化切或降幂。
例6、已知函数 (a∈(0,1)),求f(x)的最值,并讨论周期性,奇偶性,单调性。
分析:
对三角函数式降幂
∴ f(x)=

则 y=au
∴ 0<a<1
∴ y=au是减函数
∴ 由 得 ,此为f(x)的减区间
由 得 ,此为f(x)增区间
∵ u(-x)=u(x)
∴ f(x)=f(-x)
∴ f(x)为偶函数
∵ u(x π)=f(x)
∴ f(x π)=f(x)
∴ f(x)为周期函数,最小正周期为π
当x=kπ(k∈z)时,ymin=1
当x=kπ (k∈z)时,ynax=
注:研究三角函数性质,一般降幂化为y=asin(ωx φ)等一名一次一项的形式。
同步

(一) 选择题
1、下列函数中,既是(0, )上的增函数,又是以π为周期的偶函数是
a、y=lgx2 b、y=|sinx| c、y=cosx d、y=
2、 如果函数y=sin2x acos2x图象关于直线x=- 对称,则a值为
a、 - b、-1 c、1 d、
3、函数y=asin(ωx φ)(a>0,φ>0),在一个周期内,当x= 时,ymax=2;当x= 时,ymin=-2,则此函数解析式为
a、 b、
c、 d、
4、已知 =1998,则 的值为
a、1997 b、1998 c、1999 d、
5、已知tanα,tanβ是方程 两根,且α,β ,则α β等于
a、 b、 或 c、 或 d、
6、若 ,则sinx·siny的最小值为
a、-1 b、- c、 d、
7、函数f(x)=3sin(x 100) 5sin(x 700)的最大值是3页,当前第2123
  • 推荐阅读:
  • 三角函数教案2
  • 高一数学说课稿:三角函数
  • 向量与三角函数创新题型的解题技巧
  • 1.6三角函数模型的简单应用---潮汐问题
  • 《三角函数》教学反思
  • 已知三角函数值求角
  • 三位数乘两位数教案
  • 两位数乘两位数教案
  • 因数和倍数教案

a、5.5 b、6.5 c、7 d、8
8、若θ∈(0,2π],则使sinθ<cosθ<cotθ<tanθ成立的θ取值范围是
a、( ) b、( ) c、( ) d、( )
9、下列命题正确的是
a、 若α,β是第一象限角,α>β,则sinα>sinβ
b、 函数y=sinx·cotx的单调区间是 ,k∈z
c、 函数 的最小正周期是2π
d、 函数y=sinxcos2φ-cosxsin2x的图象关于y轴对称,则 ,k∈z
10、 函数 的单调减区间是
a、 b、
b、 d、 k∈z
(二) 填空题
11、 函数f(x)=sin(x θ) cos(x-θ)的图象关于y轴对称,则θ=________。
12、 已知α β= ,且 (tanαtanβ c) tanα=0(c为常数),那么tanβ=______。
13、 函数y=2sinxcosx- (cos2x-sin2x)的最大值与最小值的积为________。
14、 已知(x-1)2 (y-1)2=1,则x y的最大值为________。
15、 函数f(x)=sin3x图象的对称中心是________。
(三) 解答题
16、 已知tan(α-β)= ,tanβ= ,α,β∈(-π,0),求2α-β的值。
17、 是否存在实数a,使得函数y=sin2x acosx 在闭区间[0, ]上的最大值是1?若存在,求出对应的a值。
18、已知f(x)=5sinxcosx- cos2x (x∈r)
(1) 求f(x)的最小正周期;
(2) 求f(x)单调区间;
(3) 求f(x)图象的对称轴,对称中心。
参考答案
(一) 选择题
1、b 2、b 3、b 4、b 5、a 6、c 7、c 8、c 9、d 10、b
(二) 填空题
11、 ,k∈z 12、 13、-4 14、 15、( ,0)
(三) 解答题
16、
17、
18、(1)t=π
(2)增区间[kπ- ,kπ π],减区间[kπ
(3)对称中心( ,0),对称轴 ,k∈

3页,当前第3123
  • 推荐阅读:
  • 三角函数教案2
  • 高一数学说课稿:三角函数
  • 向量与三角函数创新题型的解题技巧
  • 1.6三角函数模型的简单应用---潮汐问题
  • 《三角函数》教学反思
  • 已知三角函数值求角
  • 三位数乘两位数教案
  • 两位数乘两位数教案
  • 因数和倍数教案