互为反函数的函数图象间的关系
一、 教学目标
1.理解并掌握互为反函数的函数图像间的关系定理,运用定理解决有关反函数的问题,深化对互为反函数本质的认识.
2.运用定理画互为反函数的图像,研究互为反函数的有关性质,提高解函数综合问题的能力.
3.提高学生的形象思维与抽象思维相结合的逻辑思维能力,培养学生数形结合的数学思想和转化的数学思想.
二、 教学重点
互为反函数的函数图象间的关系和数形结合的数学思想
三、 教学难点
互为反函数的函数图象间的关系
四、 教学方法
启发式教学方法
五、 教学手段
多媒体课件
六、 教学过程
(一) 复习:
1. 求反函数的步骤 (1解 2换 3注明)
2. 求出下列函数的反函数
① y=2x+4 (x∈r) (y=x/2 -2 x∈r)
② y=6-2x (x∈r) (y=3- x/2 x∈r)
③ y=x2 (x≥0) (y=x1/2 x≥0)
(二) 新课导入
1. 分别将上述三个函数与其反函数的图象做在同一个直角坐标系中
2. 分析各图中互为反函数的函数图象间的关系
3. 给出定理:函数y=f(x)的图象和它的反函数y=f –1(x)图象关于直线
y=x对称
4. 讲解例一:
例1 求函数y=x3 (x∈r)反函数,并画出原来的函数和它的反函数
的图象。
解:由y=x3,得x=y1/3。因此,函数y=x3反函数是y=x1/3 (x∈r)。函数y=x3 (x∈r)和它的反函数y=x1/3 (x∈r)的图象略。
5. 讲解例二:
例2 在直角坐标内,画出直线y=x,然后找出下面这些点关于直线y=x的对称点,并写出它们的坐标:
a (2,3) b (1,0) c(-2,-1) d (0,-1)
解:图略
点a的对称点为a’ (3,2),点b的对称点为b’ (0,1),
点c的对称点为c’ (-1,-2),点d的对称点为d’(-1,0)。
6. 给出推论:点(a,b)关于直线y=x的对称点为(b,a)
7. 练习:函数f(x)=ax+b的图象经过(1,3),其反函数的图象经过(2,0),
求f(x)的解析式。
解:因为函数f(x)的反函数图象经过点(2,0),根据定理和推论,
函数f(x)的图象经过点(0,2)。
将点(0,2)(1,3)的横、纵坐标分别代入f(x)的解析式得:共2页,当前第1页12
0×a+b=2
解得:a=1 b=2
a×1+b=3
所以,f(x)=x+2
七、 教学小结
对这节课所学知识进行小结,互为反函数的函数图象是关于直线y=x对称的。
八、 教学作业
思考题及教材64页2、3、5题
九、 板书设计
互为反函数的函数图象间的关系
定理:函数y=f(x)的图象和它的反函数y=f –1(x)图象关于直线y=x对称。
推论:点(a,b)关于直线y=x的对称点为(b,a)
十、 教学反思
共2页,当前第2页12