皮皮范文网欢迎您!
首页 >  教案大全 >  数学教案 >  初中数学教案 >  七年级数学教案 >

第一章 “有理数”简介

课程教材研究所 薛彬  本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。本章主要内容是有理数的有关概念及其运算。首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法运算。  本章教学时间约需21课时,具体安排如下:   1.1正数和负数约2课时   1.2有理数约5课时

  1.3有理数的加减法约4课时

  1.4有理数的乘除法约4课时

  1.5有理数的乘方约4课时

  数学活动   小结约2课时


  一、教科书内容和课程学习目标    本章知识结构框图如下:       引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。   引进数轴可以把有理数用数轴上的一个点直观地表示出来,从而可以直观地介绍相反数、绝对值,同时为用数轴引进有理数的加法法则与乘法法则作准备。   引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。   引入绝对值的的概念,可以加深对有理数的认识:一个有理数由符号与绝对值确定。两个负数比较大小,有理数运算也要借助绝对值这个概念。   本章的重点是有理数的运算。加法与乘法都是在介绍运算法则——着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。   减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算。   乘方是几个相同因数的乘积,也就可以利用乘法运算。科学记数法与乘方有关,因而可进一步加以介绍。近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。   为了加强与相关运算的联系,利用计算器计算分散安排在相关内容中。例如,教科书用计算器计算一些负数的乘方,进而探求负数的乘方的符号规律。学会了使用计算器进行有理数运算,较复杂的计算就可以用计算器完成。简单的有理数运算仍需要学生熟练地用笔算完成。   本章的教学要求如下:   1.通过实际例子,感受引入负数的必要性。会用正负数表示实际问题中的数量。   2.理解有理数的意义,能用数轴上的点表示有理数。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。通过上述内容的学习,体会从数与形两方面考虑问题的方法。   3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。能运用有理数的运算解决简单的问题。   理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主)。   通过实例进一步感受大数,并能用科学记数法表示。了解近似数与有效数字的概念。   二、本章编写特点    1.加强与实际的联系   (1)从实际出发引入有关内容   章前引言注意与实际的联系,用温度、净胜球、零件生产、纳米的实例引入本章的内容。通过第一节开头回顾学过的数的产生和发展的过程,说明数的产生和发展离不开生活和生产的需要。   有理数的有关概念注意从实际引入。例如,数轴是通过描述位置的问题引出的,并让学生通过温度计加深对数轴的认识。又如,通过一个“观察”,栏目,给出未来一周天气预报,提出问题“你能将图中给出的各个温度按从低到高的顺序排列吗?”,从而引出有理数比较大小的内容。   从实际出发引入有理数的运算。例如,通过足球比赛中,计算章前引言中红队和白队的净胜净胜球数,出现   4+(-2),1+(-1),   引出正数与负数的加法.又如,通过某地一天的气温是-3℃~4℃,这天的温差(℃)就是4-(-3),引出正数与负数的减法.   (2)运用有关内容解决实际问题   教科书通过引言中温度、净胜球、加工允许误差的实例引出负数后,进一步介绍正负数在实际中的应用。例如,在地形图上表示某地的高度要用到正负数。又如,银行储蓄中存入用正数表示,支出用负数表示。再如,用正负数描述体重、出口总额的增减变化。通过这些例子,让学生进一步体会引入负数在解决实际问题中的作用。   学过有理数的有关运算后,即可运用相应运算解决实际问题。例如,运用有理数加法解决有关求和的实际问题,运用有理数的乘法解决气温变化的问题,运用有理数的混合运算解决公司盈亏问题。   让学生通过“数学活动”将本章内容运用于实际。例如,让学生运用本章有关内容掌握家庭的生活收支情况。又如,让学生运用本章有关内容描述一周的气温情况。再如,让学生收集实例,体会科学记数法和近似数等在实际中的应用。   2.运用数形结合的方法   学习本章的一个关键,就是利用数轴的直观性,帮助学生理解相反数与绝对值的概念,掌握比较有理数大小的方法,认识有理数的运算法则。   从数轴上看,有许多对关于原点对称的点,从而引出相反数加以描述。除了关于原点对称的点以外,数轴上不同的点到原点的距离不同,这又可以引入绝对值加以描述。利用数轴规定有理数的顺序,既直观又涵盖了有理数比较大小的各种情况。   利用数轴分析物体运动的实例,可以非常直观地获得物体两次运动的结果,从而引出有理数加法的运算法则。   教科书还利用数轴、通过蜗牛运动的例子引出有理数乘法法则。在前两个学段,学生对速度×时间=路程已经熟悉:如果知道速度,时间,就可以用速度×时间求出路程,如果再知道运动的起点,运动的方向,就可以用速度×时间确定运动一段时间后的位置。在此基础上,可进一步指出,如果把时间区分为现在前与现在后,速度×时间就表示一段时间前与一段时间后的位置。另一方面,这个位置借助数轴容易确定,从而写出相应的算式。可以看到,有了数轴,上述内容就能够清楚地呈现。   3.让学生通过观察、思考、探究、讨论、归纳,主动地进行学习  让学生从身边事物的观察入手,可以加深学生对所学内容的印象。例如,观察温度计可以使学生获得数轴的直观感受。又如,让学生观察一周天气预报,使他们感受到比较温度高低的必要,从而引出有理数比较大小的内容。再如,让学生观察运算结果的符号,使他们掌握有理数运算的符号规律。   勤于思考,善于思考,是学好数学的必要条件。教科书中穿插安排了大量的思考栏目。例如,让学生思考有理数的分类方法。又如,让学生思考加法运算律在有理数范围是否成立。再如,让学生思考运算律简化计算的作用。这些栏目有的通过对问题的思考获得结论,有的通过对解决问题的过程的反思加深认识。要让学生积极动脑,积极参与,激发他们学习的热情。     探究是解决问题,探求结论的过程,要让学生知其然,更知其所以然。例如,在本章中,让学生通过数轴探求物体两次运动的结果,从而认识有理数的加法运算法则,以及探究有理数乘法法则。在这些问题中,学生自己探索发现,体验获得结论的过程。   讨论是合作交流,从而互相启发,互相促进的一种方式。积极交流表达思想可以促进数学思考,扩大和加深对问题的认识。例如,通过对有理数减法与有理数加法的关系的讨论,让学生结合具体例子寻找结论,在这个过程中共同探索,共同发现,共同交流,共同分享成功的喜悦。成功的讨论可以使学生感受集体的力量。   在观察、思考、讨论的基础上归纳结论是学习过程中的一个重要环节。结论是探索的结果,又要进一步运用于解决问题中。如归纳正负数的相反意义,加减运算的统一。要通过归纳让学生体会从特殊到一般,从具体到抽象的过程,使他们既学会发现,又学会总结。   2页,当前第112三、几个值得关注的问题   1.与前两个学段的衔接   前两个学段学过整数、分数(包括小数)的知识,即正有理数及0的知识,还学过用字母表示数的知识,这些都是学习本章内容的基础。   有理数的有关概念以及运算,与前两个学段学过的数的概念及运算联系紧密。例如,对负数的认识离不开对已学过的数的认识;有理数的运算,当符号确定后,就归结到已学过的运算上去。因此,学习有理数的有关概念以及运算,都必须注意与从前两个学段学过的数的概念及运算的衔接。   教科书把用字母表示数的知识运用于本章。例如,用-a表示a的相反数;用字母表示求一个数的绝对值的结论;用字母表示有理数的减法法则、除法法则。这样做可以使问题的阐述更简明、更深入,同时,前面学过的数与代数的知识,也得到了巩固、加强和提高。   2.把握好教学要求
   对绝对值的要求,要有一个过程,有些要求要在今后的学习中落实,例如绝对值不等式等等。本章安排绝对值的概念,主要是为有理数的运算作准备的。会求一个数的绝对值就达到了上述要求。教科书中用字母表示求一个数的绝对值的结论,并不要求在绝对值符号中出现字母并加以讨论。   有理数运算中涉及的数应当比较简单,如果涉及的数比较复杂可以利用计算器解决,主要是确定结果的符号。对于有理数的混合运算,也要控制复杂程度。   3.用好计算器
   用计算器可以进行有理数的运算,这意味着没有必要要求学生进行复杂的笔算,使它们有更多的时间运用有理数的运算解决问题。   有理数运算的基本要求不能削弱。因此,用计算器进行有理数运算的内容,都要在学生掌握了相应运算以后再加以介绍。   让计算器为学生掌握有理数的运算服务。笔算以后,可以用计算器验算,参照计算器计算的结果,学生可以判断笔算结果是否正确。如果笔算的结果不正确,应鼓励学生寻找笔算过程中的错误并加以改正,而不是把计算器算得的结果一抄了事。   让计算器帮助学生探索运算规律。例如,考察乘法交换律、乘法结合律与分配律是否在有理数范围内适用,可以让学生选较复杂的数进行尝试,用计算器获得结果。   4.利用好选学内容    本章安排了“阅读与思考”“观察与猜想”“实验与探究”等选学内容。这些选学内容是本章中有关问题的扩展与加深。适时安排有兴趣的学生使用这些材料,可以开阔他们的眼界,增长他们的见识。例如,从引言中的零件问题出发,可以在“阅读与思考用正负数表示加工允许误差”中了解更丰富的内容。又如,从有理数乘法的符号规律,可以解释一个翻牌游戏中的数学道理。   总之,要使选学内容与必学内容相得益彰,提高学生的数学水平2页,当前第212