皮皮范文网欢迎您!
首页 >  教案大全 >  数学教案 >  高中数学教案 >  高二数学教案 >

等差数列

    教学目标                        1.明确等差中的概念.     2.进一步熟练掌握等差数列的通项公式及推导公式     3.培养学生的应用意识.     教学重点                    等差数列的性质的理解及应用     教学难点                    灵活应用等差数列的定义及性质解决一些相关问题     教学方法                        讲练相结合     教具准备                        投影片2张(内容见下面) 教学过程                        (i)复习回顾 师:首先回忆一下上节课所学主要内容: 1.  等差数列定义: (n≥2) 2.  等差数列通项公式: (n≥2) 推导公式: (ⅱ)讲授新课 师:先来看这样两个例题(放投影片1) 例1:在等差数列 中,已知 , ,求首项 与公差 例2:梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。1.  解:由题意可知 解之得 即这个数列的首项是-2,公差是3。 或由题意可得: 即:31=10+7d 可求得d=3,再由 求得1=-2 2.  解设 表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知: a1=33,  a12=110,n=12 ∴ ,即时10=33+11 解之得: 因此, 答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm. 师:[提问]如果在 与 中间插入一个数a,使 ,a, 成等差数列数列,那么a应满足什么条件? 生:由定义得a- = -a 即: 反之,若 ,则a- = -a 师:由此可可得: 成等差数列,若 ,a, 成等差数列,那么a叫做 与 的等差中项。 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13…中 5是否和风细雨的等差中项,1和9的等差中项。 9是7和11的等差中项,5和13的等差中项。 看来, 从而可得在一等差数列中,若m+n=p+q 则, 生:结合例子,熟练掌握此性质 师:再来看例3。(放投影片2) 生:思考例题 例3:已知数列的通项公式为: 分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。 解:取数列 中的任意相邻两项 与 (n≥2), 则: 它是一个与n无关的常数,所以 是等差数列。在 中令n=1,得: ,所以这个等差数列的首项是p=q,公差是p.看来,等差数列的通项公式可以表示为: ,其中 、 是常数。 (ⅲ)课堂练习 生:(口答) (书面练习) 师:给出答案 生:自评练习 (ⅳ)课时小结 师:本节主要概念:等差中项 另外,注意灵活应用等差数列定义及通项公式解决相关问题。 (ⅴ)课后作业 一、课本 二、1.预习内容     2.预习提纲:①等差数列的前n项和公式; ②等差数列前n项和的简单应用。 教学后记                 

  • 推荐阅读:
  • 等差数列
  • 等差数列
  • 等差数列
  • 3.1 等差数列(第一课时)
  • 等差数列
  • 等差数列
  • 等比数列教案
  • 等差数列教案
  • 数列教案