练习二,如图7-67,pa、pb是⊙o的两条切线,a、b为切点,直线op交⊙o于d、e,交ab于e.
(1)写出图中所有的垂直关系.(2)写出图中所有的全等三角形.例1 p.119例1已知:如图7-68,p为⊙o外一点,pa、pb为⊙o的切线,a和b是切点,bc是直径.求证:ac∥op.
分析:欲证ac∥op.题中已知bc为⊙o的直径,可想到ca⊥ab,若能证出op⊥ab,问题便得到解决.可指导学生考虑切线长定理,证三角形pab为等腰三角形,再根据“三线合一”的性质,证得op⊥ab,证法参考教材p.119例1.在证明ac∥op时,除了上面的方法,还可以从角的相等关系来证.例2 p.119,圆外切四边形的两组对边的和相等.已知:如图7-69,四边形abcd的边ab、bc、cd、da和⊙o分别相切于l、m、n,p.求证:ab+cd=ad+bc.
分析:这是本书中唯一在今后可做为定理使用的例题.首先教师指导学生根据文字命题正确地使用已知,求证的形式把命题具体化.然后指导学生完成证明,证明过程参照教材.练习三,p.120中3.已知:如图7-70,在△abc中,bc=14cm,ac=9cm,ab=13cm,它的内切圆分别和bc、ac、ab切于点d、e、f,求af、bd、ce的长.
分析:这是一道利用几何图形的性质,采用代数的解题方法的一道计算题.教学中教师要注意引导学生通过解三元一次方程组来得到切线长.解:∵ab、ac分别切⊙o于f、e,∴af=ae.同理:bf=bd,cd=ce.设af=x,bd=y,ce=z.答:切线长af=4厘米,bd=9厘米,ce=5厘米.三、课堂小结:让学生阅读教材p.118至p.120,并总结归纳出本课的主要内容.共2页,当前第1页12
- 推荐阅读:
- 切线长定理
- 切线长定理
- 切线长定理
- 切线长定理
- 切线长定理
- 切线长定理
- 推荐阅读:
- 切线长定理
- 切线长定理
- 切线长定理
- 切线长定理
- 切线长定理
- 切线长定理