皮皮范文网欢迎您!
首页 >  教案大全 >  数学教案 >  初中数学教案 >  七年级数学教案 >

1.8 完全平方公式(1)

教学目标:

1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;

2.会推导完全平方公式,并能运用公式进行简单的计算;

3.了解完全平方公式的几何背景. 教学重点:

1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;

2.会用完全平方公式进行运算. 教学难点:会用完全平方公式进行运算 教学过程:一、探索练习:

一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)

用不同的形式表示实验田的总面积,并进行比较你发现了什么?

观察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?

(2)(a-b)2等于什么?小颖写出了如下的算式:

(a-b)2=[a+(—b)]2.

她是怎么想的?你能继续做下去吗?

由此归纳出完全平方公式:

(a+b)2=a2+2ab+b2

(a-b)2=a2—2ab+b2

教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来.

例:(利用完全平方公式计算)

(1)(2x-3)2

解:(2x-3)2

=(2x)2-2·(2x)·3+32

=4x–12x+9二、巩固练习:

1.下列各式中哪些可以运用完全平方公式计算_______________

(1) ;(2) ;

(3) ;(4) .

2.计算下列各式:

(1) ;(2) ;(3) ;

(4) ;(5) ;

(6) .

4.填空:

(1) _____________;(2) ;

(3) ; 三、提高练习:

1.求 的值,其中

2.若                                                                                                                   小结:熟记完全平方公式,会用完全平方公式进行运算. 作业:课本p36习题1.13:1、2. 教学后记:学生基本上能套用平方差公式进行运算,但是也有出现以下错误: (1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2对公式的真正理解有待加强.