(满分100分,时间90分)
1.判断题:(每小题3分,共24分)
(1)和为的两个角是邻补角; ( )
(2)如果两个角不相等,那么这两个角不是对顶角 ( )
(3)两条直线被第三条直线所截,同位角相等 ( )
(4)如果直线∥,那么∥ ( )
(5)两条直线平行,同旁内角相等; ( )
(6)邻补角的角平分线所在的两条直线互相垂直 ( )
(7)两条直线相交,所成的四个角中,一定有一个是锐角 ( )
(8)如果直线那么∥ ( )
2. 选择题:(每小题5分,共20分)
(1)下列语句中,正确的是( )
(a)有一条公共边且和为的两个角是邻角;
(b)互为邻补角的两个角不相等
(c)两边互为反向延长线的两个角是对顶角
(d)交于一点的三条直线形成3对对顶角
(2)如图,如果ad∥bc,则有
①∠a+∠b=
②∠b+∠c=
③∠c+∠d=
上述结论中正确的是( )
(a) 只有①
(b) 只有②
(c) 只有③
(d)只有①和③
(3)如图,如果ab∥cd,cd∥ef,那么∠bce等于( )
(a)∠1+∠2
(b)∠2-∠1
(c)-∠2 +∠1
(d)-∠1+∠2
(4)如果直线∥,∥,那么∥。这个推量的依据是( )共2页,当前第1页12
(a)等量代换
(b)平行公理
(c)两直线平行,同位角相等
(d)平行于同一直线的两条直线平行
3. 填空:(每空1分,共16分)
(1)如图,∠3与∠b是直线ab、______被直线______所截而成的______角;∠1与∠a是直线ab、______被直线______所截而成的______角;∠2与∠a是直线ab、______被直线______所截而成的______角。
(2)已知:如图,ab∥cd,ef分别交于ab、cd于e、f,eg平分∠aef,fh平分∠efd。
求证: eg∥fh
证明:∵ ab∥cd(已知)
∴ ∠aef=∠efd (______)
∵ eg平分∠aef,fh平分∠efd(______),
∴∠______=∠aef,
∠______=∠efd(角平分线定义)
∴ ∠______=∠______
∴ eg∥fh(______)
4.已知:如图,∠1=,ab⊥cd,垂足为o,ef经过点o。求∠2、∠3、∠4的度数。(10)
5.已知:如图,直线ef与ab、cd分别相交于点g、h,∠1=∠3。
求证:ab∥cd。(10分)
6.已知:如图,ab∥cd,be∥cf。
求证:∠1=∠4。(10分)
7.已知:如图,be∥df,∠b=∠d。求证:ad∥bc。(10分)
初中几何第二章“相交线、平行线”能力自测题
参考答案
1.(1)× (2)√ (3)× (4)× (5)× (6)√ (7)× (8)√
2.(1)c (2)d (3)c (4)d
3.(1)ce,bd,同位;bd,ac,同旁内;ce,ac,内错
(3)两直线平行,内错角相等,已知,∠gef,∠efh,∠gef,∠efh,内错角相等,两直线平行
4.∠2=,∠3= ∠4=
5.证明:∵∠1=∠ghd,∠3=∠agh(对顶角相等),
∠1=∠3(已知),
∴∠agh=∠ghd
∴ab∥cd(内错角相等,内错角相等)
6.证明:∵ab∥cd(已知),
∴∠abc=∠bcd(两条直线平行,内错角相等)
∵be∥cf(已知)
∴∠2=∠3(两条直线平行,内错角相等),
∵∠abc=∠1+∠2,∠bcd=∠3+∠4,
∴∠1=∠4
7. 证明:∵be∥df(已知)
∴∠d=∠ead(两条直线平行,内错角相等),
∵∠b=∠d(已知),
∴∠b=∠ead
∴ad∥bc(同位角相等,两直线平行)
共2页,当前第2页12