皮皮范文网欢迎您!
首页 >  教案大全 >  数学教案 >  小学数学教案 >  小学六年级数学教案 >

《正比例的意义》教案

                                               

教学目的  

教材通过实例说明两种相关联的量,一种量随着另一种量的变化而变化。一种量扩大,另一种量随着扩大;一种量缩小,另一种量也随着缩小。并且从具体的数据中看出:这两种相关联的量扩大、缩小的变化规律是它们相对应的两个数的比值(商)总是一定的,写成关系式就是:y/x=k(一定),从而给出正比例的意义。通过正比例意义的教学,向学生渗透初步的函数思想。

教学过程

一、创设情境,建立表象

师:今天我们继续研究数量之间的关系。

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度 时间 路程

(2)单价 数量 总价

(3)工作效率 工作时间 工作总量

2.学习例1。(小黑板出示)

等底、等高的水杯中的水


高度/厘米

2

4

水的高度越高,体积越大。。。。。

6

8

10

12

. . .

体积/立方厘米

50

100

150

200

250

300

. . .

底面积/平方厘米

. . .

体积和高度的变化有什么规律?

要求学生在表格中的括号里填写适当的数据。

[通过填写有关数据,让学生初步了解两种相关联量间的对应关系。]

师:表中有哪两种量?(生:高度和体积这两种量。)

师:高度这种量由2厘米变成4厘米、6厘米……(看小黑板),体积这种量是怎样发生变化的?

生:体积随着高度的变化,由50立方厘米,变成100立方厘米、150立方厘米……(学生回答后,教师用蓝色粉笔标出)

师:像这样,一种量变化,另一种量也随着变化(边口述边抽动箭头同向演示),这两种量叫做“两种相关联的量”(板书)。这个表中哪两种量是相关联的量?(学生回答后,教师板书:路程、时间)

[先让学生理解“相关联的量”的含义,就为学习正比例的意义做好准备。]

师:表中,哪一种量随着另一种量的变化而变化?是怎么变化的?

生:体积随着高度的变化而变化。高度扩大,体积随着扩大,高度缩小,体积随着缩小。

师:它们扩大或缩小有什么规律呢?

(学生讨论后回答)

生:高度扩大体积也扩大,高度缩小体积也缩小。

师:还有什么规律呢?

生:体积和高度的比的比值是不变的,都是25。

[让学生发现规律,体现以学生为主体的精神。]

师:谁能举例说明这位同学发现的规律?

生:……。

教师板书:   =25     =25    =25    ……

师:比值是不变的,也可以说是“一定的”。比值60一定,实际上就是什么一定?

生:水杯的底面积一定。

师:同学们能用式子表示这个变化规律吗?

生:……。

教师板书:体积÷高度=底面积(一定

[将具体的数量关系,用关系式表示出来,以培养学生抽象概括能力。]

师:在这个表中,无论高度怎么变,体积怎么随着变,但它们比的比值(底面积)是不变的。体积和高度是两种什么样的量?(相关联的量)底面积呢?(定量)3页,当前第1123

  • 推荐阅读:
  • 比例的意义和性质(复习课)
  • 正、反比例的意义
  • 2.比例的意义
  • 比例的意义、基本性质和解比例
  • 第三单元:比例 第四课时 比例的意义和性质2
  • 第三单元 比例 比例的意义
  • 比例的意义教学设计
  • 正比例教学设计
  • 正比例教学反思

2.学习例2。

师:在布店的柜台上,有一张写着某种花布米数和总价的表。

(投影显示)

米 数

1

2

3

4

5

6

7

……

总价(元)

2.4

4.8

7.2

9.6

1.2

14.4

16.80

……

出示思考题:

(1)价目表中,有哪两种量?是相关联的量吗?为什么?

(2)相关联的两种量的变化规律怎样?举例说明。

(3)哪一种量是定量?

(4)怎样用式子表示相关联的两种量的变化规律?

自学教科书并分组议论后,共同解答思考题。

板书:总价÷米数=单价(一定

[提出思考题,组织全班学生展开讨论,既体现面向全体学生,激发学生学习积极性,又发展了学生思维,加深对正比例意义的理解。]

3.用字母表示变化规律。

师:如果用字母x、y表示两种相关联的量,用k表示比值,上面的数量关系式,可以用什么样的字母公式表示?

生:y÷x=k(一定)

师:这个字母式子,还可以表示许多其它像这样的变化规律。

[用字母表示数量关系,有助于学生抽象思维能力的提高。]

二、抽象概括,揭示规律

1.概括正比例的意义。

师:这两个具体数量关系式的等号左边是什么?

生:是一个比。

师:这个比实际上表示两种相关联的量中“相对应的两个数的比”。

板书:相对应的两个数的比

师:等号右边是什么?

生:是比值。

师:这个比值是固定不变的量,是“一定”的。

[从分析两道数量关系式入手,逐步让学生领会关系式中比与比值的实际意义,有助理解正比例的意义,从而提高学生的理解能力。]

师:像这样的两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫做什么呢?它们的关系是怎样的呢?请同学们看书第39页。

板书:成正比例的量、正比例关系

[在学生领会关系式中比与比值实际意义的基础上,结合阅读教科书,概括出正比例的意义,从而让学生对正比例的意义理解深刻,易于掌握。]

2.做一做。

长征造纸厂的生产情况如下表,根据下表回答问题。

时间(天)

1

2

3

4

5

6

7

8

……

生产量(吨)

70

140

210

280

350

420

490

560

……

(1)表中有哪两种相关联的量?

(2)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小。

(3)说明这个比值所表示的意义。

(4)表中相关联的两种量成正比例吗?为什么?

要求学生先动笔写写,同座之间再相互说说。

师:你们写的是什么?比值是什么?比值表示什么?你能用式子表示变化规律吗?

[让学生及时了解学习的结果,是反馈原理在教学中的运用。]

三、分层练习,深化新知

1.根据下表两种量中相对应的数的比值,判断这两种量是不是成正比例,并说明理由。

(1)文具商店出售一种铅笔。

购买铅笔的支数

2

5

6

9

总  价(元)

0.40

1.00

1.20

1.80

(2)小强带5元钱买文具。

用去的钱(元)

1.2

2

25

3.4

4

1

剩下的钱(元)

3.8

3

25

1.6

1

4

小结:相对应的两个数的和一定,两种量不成比例,只有当比值一定时,两种相关联的量才成正比例。

[通过对比练习,有助于加深对正比例的意义理解。]

2.选择题。(在正确答案下面的圈内涂黑色)

下面哪一个式子表示x和y这两种量是成正比例的量。3页,当前第2123

  • 推荐阅读:
  • 比例的意义和性质(复习课)
  • 正、反比例的意义
  • 2.比例的意义
  • 比例的意义、基本性质和解比例
  • 第三单元:比例 第四课时 比例的意义和性质2
  • 第三单元 比例 比例的意义
  • 比例的意义教学设计
  • 正比例教学设计
  • 正比例教学反思

x+y=5  y /x=5  xy=5  y=5x

4.对比题。

(1)小红坚持每天做3道题。

天  数

1

2

3

4

5

题  数

3

6

9

12

15

师:哪两种量成正比例关系?为什么?

生:小红做的题数和天数成正比例关系……

(2)小强在一星期内每天做练习的题数。

星  期

题  数

4

3

2

5

3

2

师:小强每天做的题数和天数成正比例关系吗?为什么?

生:略。

5.学赖宁小组坚持每周做两件好事。这样,一周做2件,两周做4件,一个月(4周)做8件……一年52周做多少件好事呢?

周   数

1

2

4

……

52

做好事件数

2

4

8

……

师:做好事的周数与做好事的件数这两种量中,相对应的两个数的比值是多少?这两种量成正比例的关系吗?

师:日常生活中,成正比例的量很多,你还能举出例子来吗?

生:略。

四、课堂小结,宣布下课

[这节课通过具体实例,借助事物表象,引导学生逐步了解数量之间的内在联系,从而发现两种相关联量的变化规律。在教学过程中,面向全体学生,创设情境,激发学习兴趣,调动学生主动探索规律的积极性,重视初步逻辑思维能力的培养。练习设计,具有坡度,深化拓宽了所学知识,有利于提高学生的思维品质。]

3页,当前第3123
  • 推荐阅读:
  • 比例的意义和性质(复习课)
  • 正、反比例的意义
  • 2.比例的意义
  • 比例的意义、基本性质和解比例
  • 第三单元:比例 第四课时 比例的意义和性质2
  • 第三单元 比例 比例的意义
  • 比例的意义教学设计
  • 正比例教学设计
  • 正比例教学反思