(一)几何图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形
平面图形:三角形、四边形、圆等。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。包围体的面都是平的面(多面体);
包围着体的面不都是平的面(旋转体)
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段
1、基本概念
直线
射线
线段
端点个数
无
一个
两个
表示法
直线a;直线ab(ba)
射线ab
线段a;线段ab(ba)
作法叙述
作直线ab;作直线a
作射线ab
作线段a;作线段ab;连接ab
延长叙述
不能延长
反向延长射线ab
延长线段ab;反向延长线段ba
2、直线的性质
经过两点有一条直线,并且只有一条直线。简单地:两点确定一条直线。
3、画一条线段等于已知线段:用尺规作图法
4、线段的大小比较方法:(1)度量法 (2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段分成两条相等线段的点。
图形: a m b
符号:若点m是线段ab的中点,
则am=bm=ab,ab=2am=2bm。
6、线段的性质:两点的所有连线中,线段最短。简单地:两点之间,线段最短。
7、两点的距离:连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系:(1)点在直线上 (2)点在直线外。
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):3、角的度量单位及换算
4、角的分类
∠β
锐角
直角
钝角
平角
周角
范围
0<∠β<90°
∠β=90°
90°<∠β<180°
∠β=180°
∠β=360°
5、角的比较方法
(1)度量法 (2)叠合法
6、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
7、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
8、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角。其中∠1是∠2的余角,∠2是∠1的余角。
(2)若∠1+∠2=180°,则∠1与∠2互为补角。其中∠1是∠2的补角,∠2是∠1的补角。
(3)余(补)角的性质:等角的补(余)角相等。
9、方向角(1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向