三、比例的应用
1、比例尺教学内容:比例尺教学目标:1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。3.理解比例尺的书写特征。教学重点:比例尺的意义。教学难点:将线段比例尺改写成数值比例尺。教学过程:一揭示课题1.出示地图。(挂图)(1) 学生观察地图,找到图中标注的比例尺。(2) 教师说明比例尺的作用。师:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。这个比就是我们要学习的内容——比例尺。2.板书课题:比例尺。二探索新知1.什么叫做比例尺?师:一幅地图的图上距离的比,叫做这幅图的比例尺。板书:图上距离:实际距离=比例尺或 2.数值比例尺。(1) 出示课文插图。(2) 找到“比例尺1:100000000”。(3) 认识数值比例尺。① 1:100000000是数值比例尺。② 1:100000000表示图上距离1厘米相当于实际距离100000000厘米。(并做相应板书。③ 因为1千米=1000米1米=100厘米所以1厘米:100000000厘米 =1厘米:1000千米1:10000000也可以表示图上距离1厘米相当于实际距离1000千米。④ 1:100000000有时也写成分数形式 。3.线段比例尺。(1) 050100㎞出示课文插图。(2) 找到“比例尺 ”。(3) 050100㎞认识线段比例尺。①说明:“比例尺 ”是线段比例尺。050100㎞②“比例尺 ”表示图上距离1厘米相当于实际距离50千米。(写出相应板书) (4) 改写成数值比例尺。(例1)① 你会把这个线段比例尺改成数值比例尺吗?② 学生尝试改写,并与同学交流,最后师生共同改写。板书:图上距离:实际距离 =1㎝:5000000㎝ =1:50000004.放大比例尺。在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数后,再画在图纸上。(1) 出示课文中的“图纸”。(2) 找到“比例尺2:1”。(3) 比例尺2:1表示图上距离2厘米相应于实际距离1厘米。板书:比例尺2 : 1 图上距离 实际距离共5页,当前第1页12345
- 推荐阅读:
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例尺教案
- 比例的应用教学设计
- 比例的意义教学设计
2、解决问题教学内容:解决问题教学目标:1.使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。2.使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。教学重点:求图上距离和实际距离。教学难点:求实际距离。教学过程:一旧知铺垫1. 什么叫做比例尺?板书:图上距离:实际距离=比例尺或 2.说一说下列各比例尺表示的具体意义。(1)比例尺1:45000(2)比例尺80:102040㎞(3)比例尺二探索新知1.教学例2。(1) 出示课文例题及插图。(2) 说一说从中你得到哪些信息。已知条件:① 1号线的图上长度是10㎝;② 条幅地图的比例尺1:500000。所求问题:1号线的实际长度是多少?(3) 你认为可以用什么方法解决问题?① 学生尝试解决问题。② 教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。③ 汇报解答情况。方程解:解:设地铁1号线的实际长度是x厘米。 根据 x=10×500000(问:根据什么?) 根据比例的基本性质。 x=50000005000000㎝=50㎞答:略算术解:根据 ,得出:实际距离 10÷ =10×500000=5000000(㎝)5000000㎝=50㎞答:略2.教学例3。(1) 出示例题,学生了解题目要求。(2) 讨论:你想怎样画?通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。① 确定比例尺;② 求出图上的距离;③ 画出操场的平面图。(3) 小组同学合作,解决问题。学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。共5页,当前第2页12345
- 推荐阅读:
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例尺教案
- 比例的应用教学设计
- 比例的意义教学设计
3、图形的放大与缩小教学内容:图形的放大与缩小教学目标:1.结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。2.能按一定的比,将一些简单图形进行放大或缩小。教学重点:图形的放大与缩小。教学难点:按一定的比把图形放大或缩小。教学过程:一揭示课题1.你见过下面这些现象吗?出示课文插图。问:这些现象中,哪些是把物体放大?哪些是把物体缩小?图1把物体缩小。图2、3、4把物体放大。2.今天,我们就一起来学习这一内容。板书课题:物体的放大与缩小。二、探索新知1.教学例4。(1)出示图形要求:按2:1画出这个图形放大后的图形。①“按2:1放大”是什么意思?先让学生说出自己的理解,然后教师说明。师:按2:1放大,也就是各边放大到原来的2倍。②说一说放大后图形的边长。原来的边长是3倍,放大后图形的边长是6倍。③ 画一画。学生在方格纸上画一画,然后展示学生的作品。(3) 出示图形。要求:按2:1画出这个图形放大后的图形。过程要求:① 学生说一说“按2:1放大”的意思。交流后使学生懂得按2:1放大,就是把长和宽都放大到原来的2倍。② 学生各自尝试画图。③ 展示学生的作品。(4) 出示图形。要求:按2:1画出这个图形放大后的图形。过程要求:①“接2:1放大”在这里是什么意思?让学生交流,说出各自的理解,然后教师引导学生理解这个2:1的意思。即把三角形的两条直角边都放大到原来的2倍。②学生尝试画图。③展示作品。④ 想一想:斜边是否也变为原来的2倍?学生若有疑问,可以通过实验(如量一量,剪一剪,比一比等)进行验证。(5) 讨论。放大后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?过程要求:① 分小组讨论、交流。② 汇报讨论结果。要点:形状相同,大小不一样。3.练一练。如果把放大后的三个图形的各边按1:3缩小,图形又发生了什么变化,画画看。(1) 按1:3缩小是什么意思?通过交流,使学生明确按1:3缩小就是各边长度缩小到原来的 。(2) 学生尝试画一画。(3) 实物投影展示学生的作品。(4) 想一想。缩小后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?4.课堂小结。图形的各边按相同的比放大或缩小后,所得的图形与原来有什么相同的地方?有什么不同的地方?三巩固练习1.完成“做一做”。2.完成课文练习九第1、2题。
4、用比例解决问题教学内容:用比例解决问题。教学目标:使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。共5页,当前第3页12345
- 推荐阅读:
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例尺教案
- 比例的应用教学设计
- 比例的意义教学设计
- 推荐阅读:
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例尺教案
- 比例的应用教学设计
- 比例的意义教学设计
5、练习课教学内容:练习课练习目标:使学生进一步熟练掌握正、反比例解决问题的方法,能正确地解决有关实际问题,提高学生的实践能力。教学过程:一基础练习1.判断下面各题中相关联的量成什么比例。(1) 三角形面积一定,底和高。(2) 水池的容积一定,水管每小时注水量和所用时间。(3) 总面积一定,每块砖的面积和砖的块数。(4) 在一定的时间里,加工每个零件所用时间和加工零件个数。2.说一说。(1) 判断两种量成正比例还是成反比例的关键是什么?(2) 用比例解决问题的步骤。二、综合练习1.用比例解决下面两个问题。(1)有一批纸,可以装订每本24矾的练习簿216本,如果要装订成每本18页的练习簿,可以装订几本?(2)装订一种练习簿,装订200本要用4800页纸,有1页的纸可以装订多少本?过程要求:① 找出相关联的量,判断成什么比例。② 写出关系式。③ 列式解答,指名两位学生板演。3.引导比较。(1) 说出题中数量关系,写关系式。每本页数×本数=总页数(2) 说一说哪一种量一定,另外两种量成什么比例。(3) 针对以上两题,说一说思维过程和解题步骤① 找出题中数量关系,判断哪一种量一定,另外两种量成什么比例。② 根据等量关系列比例式。③ 解比例。④ 检验。三巩固练习完成课文练习九第6、7题。
共5页,当前第5页12345- 推荐阅读:
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例的应用
- 比例尺教案
- 比例的应用教学设计
- 比例的意义教学设计