教学目标:
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。 3.培养学生的合作意识和探究兴趣。 教学重点:经历观察、猜测、实验、推理的思维过程,归纳出解决问题的最优策略。 教学难点:观察归纳“找次品”这类问题的最优策略。 教学准备:课件、简易天平、5瓶木糖醇、每生5个小正方体、实验记录表格。
教学过程: 一、创设情景,初步感知: (一)、出示问题情境一(用实物演示) 有3瓶一样的木糖醇,其中1瓶少了3颗,请你想办法把它找出来。 1、学生独立思考。 2、全班交流。(用课件展示天平模型) 教师边演示边叙述。 结论:两瓶可以一次找出次品 3、3瓶的时候怎么找出来呢? 在天平的左右两边各放1瓶,如果不平衡,说明次品就在翘起来的那边,如果平衡,说明次品就是另外一瓶。 结论:三瓶也可以一次找出次品 (二)、出示问题情境二 1、如果在5瓶中呢?利用天平看谁最快把次品找出来。
(1)现在我这里有5瓶口香糖,其中1瓶少了3片,你能想办法找把它找出来吗?
(2)学生小组合作
师提示:大家可以拿出小正方体,用手摸拟天平摆摆看
(3)生汇报,师板书:
5(2,2,1)-2(1,1);2次 5(1,1,1,1,1)1次
(4)师质疑:称1次能找到吗?一定能找到吗?称2次呢?
(5)师小结:从5瓶口香糖中找次品,用天平只需要称2次就一定能找到。
(板书:5瓶称2次) 二、深入探究,寻找规律: 在9瓶木糖醇中,有一瓶是次品,(次品轻一些)用天平称,称几次就保证能找出次品来? 1、小组合作,讨论,交流,并完成以下表格:
木糖醇的总数
分成的份数
每份的数量
保证能找出次品
需要称的次数 9 3 4、4、1
3 9 3 3、3、3
2 9 5 2、2、2、2、1
3 9 9 1、1、1、1、1、1、1、1、1 4 2、全班交流,统一认识,优化方法。 结论:九瓶也只要两次可以保证找出次品 最优策略: 1、把待测物品分成三份。 2、尽量平均分,不能均分的,也应该使多的一份与少的一份只相差1。 三、智慧冲浪,提升思维。
1、练习二十六第2题 师:有 15 盒饼干,其中的 14 盒质量相同,另有 1 盒少了几块,如果能用天平称,至少几次保证可以找出这盒饼干?
2、书本做一做
(1)师:有 10 瓶水,其中 9 瓶质量相同,另有 1 瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
(2)如果是11瓶呢?又需要称多少次才能保证找到次品呢?
师小结:两种方法都很有道理,如果是我会选第一种,因为它更接近平均分成3份。这个方法到底是不是一定成立呢?大家不妨课后再举更大的数据来试试验证。
四、师小结:今天我们学了什么? 五、作业:书本练习二十六第1—3题 附板书设计: 平均分 分成3份 所称次数最少 尽量平均分