1、关于公倍数、公因数概念的引入,教材改变了以往老教材毫无生机与趣味的从抽象的概念(倍数、因数)到抽象的概念(公倍数、公因数)的引入方式,通过学生动手操作、自主探索、合作交流,自然引出两个概念,完全遵循了新课程的有关学生学习方式的理念,教学效果也很好。但我总有一个感觉,两个铺长(正)方形的题粗看很相似实质又不同,学生有混淆,特别反映在此类题的练习中,况且倍数与因数原本就是相互依存的,学生说理时常达不到教师的“位,他不知道老师要说倍数还是因数。
2、关于最小公倍数求法,列举法和“大数翻倍法”学生基本都能熟练掌握(心算能力要强);最大公因数求法,我完全放手让学生自己探索,他们自己得出了可用列举法与“小数缩倍法”(名字也是他们自己取出的),我对此加以了肯定与尊重。可我马上就后悔了,学生作业中出现了不讲所谓“小数缩倍法”不会出现的错误情况,比如12与16,有不少同学缩倍后答案不是写商4,而写了除数3,甚至33与11也出现了有同学写3。细细想来,求最大公因数千篇一律用“小数缩倍法”是不科学的,有时可能反而用“大数缩倍法简单”,关键是看“少”(因数个数)而不是看“小”,如12与57。所以还是用列举法加上让学生熟悉几种特殊情况后判断简单。
3、有关“起点”的实际问题。教材上练习四的4、7、8及练习册中的不少题目起点都是从零开始的,如第4题跳棋起点是在1前面而不是在1上,第8题“起点”是7月31日而不是8月1日,所以这类题算出的公倍数就是最后的答案,导致学生产生一个错误的认识,公倍数是几答案就是几。我不知道教材是不是有意这样编排的,但最后一个思考题,“起点”却是8月1日,导致学生答案都是公倍数12,而正确答案却是13。所以既然是解决实际生活问题,就要接近生活实际,题目就不能全是理想化的从“零”开始的。这类题应该要让学生认识到计算出的最小公倍数就是两次相隔的数量,这样不管‘起点”是几,只要加上相隔的数量就能计算出下一次。
编者:学贵有疑,教亦贵有疑!